跳转到内容

函数式序列化器

此模块包含与序列化相关的类和函数。

FieldPlainSerializer module-attribute

FieldPlainSerializer: TypeAlias = (
    "core_schema.SerializerFunction | _Partial"
)

plain 模式运行的字段序列化器方法或函数。

FieldWrapSerializer module-attribute

FieldWrapSerializer: TypeAlias = (
    "core_schema.WrapSerializerFunction | _Partial"
)

wrap 模式运行的字段序列化器方法或函数。

FieldSerializer module-attribute

FieldSerializer: TypeAlias = (
    "FieldPlainSerializer | FieldWrapSerializer"
)

一个字段序列化器方法或函数。

ModelPlainSerializerWithInfo module-attribute

ModelPlainSerializerWithInfo: TypeAlias = Callable[
    [Any, SerializationInfo[Any]], Any
]

plain 模式运行且带 info 参数的模型序列化器方法。

ModelPlainSerializerWithoutInfo module-attribute

ModelPlainSerializerWithoutInfo: TypeAlias = Callable[
    [Any], Any
]

plain 模式运行且不带 info 参数的模型序列化器方法。

ModelPlainSerializer module-attribute

ModelPlainSerializer: TypeAlias = (
    "ModelPlainSerializerWithInfo | ModelPlainSerializerWithoutInfo"
)

plain 模式运行的模型序列化器方法。

ModelWrapSerializerWithInfo module-attribute

ModelWrapSerializerWithInfo: TypeAlias = Callable[
    [
        Any,
        SerializerFunctionWrapHandler,
        SerializationInfo[Any],
    ],
    Any,
]

wrap 模式运行且带 info 参数的模型序列化器方法。

ModelWrapSerializerWithoutInfo module-attribute

ModelWrapSerializerWithoutInfo: TypeAlias = Callable[
    [Any, SerializerFunctionWrapHandler], Any
]

wrap 模式运行且不带 info 参数的模型序列化器方法。

ModelWrapSerializer module-attribute

ModelWrapSerializer: TypeAlias = (
    "ModelWrapSerializerWithInfo | ModelWrapSerializerWithoutInfo"
)

wrap 模式运行的模型序列化器方法。

PlainSerializer dataclass

PlainSerializer(
    func: SerializerFunction,
    return_type: Any = PydanticUndefined,
    when_used: WhenUsed = "always",
)

Plain 序列化器使用函数来修改序列化的输出。

当您想为带注解的类型定制序列化时,这特别有用。考虑一个 list 输入,它将被序列化为一个以空格分隔的字符串。

from typing import Annotated

from pydantic import BaseModel, PlainSerializer

CustomStr = Annotated[
    list, PlainSerializer(lambda x: ' '.join(x), return_type=str)
]

class StudentModel(BaseModel):
    courses: CustomStr

student = StudentModel(courses=['Math', 'Chemistry', 'English'])
print(student.model_dump())
#> {'courses': 'Math Chemistry English'}

属性

名称 类型 描述
func SerializerFunction

序列化器函数。

return_type Any

函数的返回类型。如果省略,将从类型注解中推断。

when_used WhenUsed

确定何时使用此序列化器。接受一个字符串,其值为 'always', 'unless-none', 'json', 和 'json-unless-none'。默认为 'always'。

WrapSerializer dataclass

WrapSerializer(
    func: WrapSerializerFunction,
    return_type: Any = PydanticUndefined,
    when_used: WhenUsed = "always",
)

Wrap 序列化器接收原始输入以及一个处理函数,该处理函数应用标准序列化逻辑,并在返回最终序列化输出之前修改结果值。

例如,这是一个场景,其中一个 wrap 序列化器将时区转换为 UTC 利用现有的 datetime 序列化逻辑。

from datetime import datetime, timezone
from typing import Annotated, Any

from pydantic import BaseModel, WrapSerializer

class EventDatetime(BaseModel):
    start: datetime
    end: datetime

def convert_to_utc(value: Any, handler, info) -> dict[str, datetime]:
    # Note that `handler` can actually help serialize the `value` for
    # further custom serialization in case it's a subclass.
    partial_result = handler(value, info)
    if info.mode == 'json':
        return {
            k: datetime.fromisoformat(v).astimezone(timezone.utc)
            for k, v in partial_result.items()
        }
    return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()}

UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)]

class EventModel(BaseModel):
    event_datetime: UTCEventDatetime

dt = EventDatetime(
    start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00'
)
event = EventModel(event_datetime=dt)
print(event.model_dump())
'''
{
    'event_datetime': {
        'start': datetime.datetime(
            2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc
        ),
        'end': datetime.datetime(
            2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc
        ),
    }
}
'''

print(event.model_dump_json())
'''
{"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}}
'''

属性

名称 类型 描述
func WrapSerializerFunction

要包装的序列化器函数。

return_type Any

函数的返回类型。如果省略,将从类型注解中推断。

when_used WhenUsed

确定何时使用此序列化器。接受一个字符串,其值为 'always', 'unless-none', 'json', 和 'json-unless-none'。默认为 'always'。

SerializeAsAny dataclass

SerializeAsAny()

用于将类型标记为具有鸭子类型序列化行为的注解。

有关更多详细信息,请参阅用法文档

field_serializer

field_serializer(
    field: str,
    /,
    *fields: str,
    mode: Literal["wrap"],
    return_type: Any = ...,
    when_used: WhenUsed = ...,
    check_fields: bool | None = ...,
) -> Callable[
    [_FieldWrapSerializerT], _FieldWrapSerializerT
]
field_serializer(
    field: str,
    /,
    *fields: str,
    mode: Literal["plain"] = ...,
    return_type: Any = ...,
    when_used: WhenUsed = ...,
    check_fields: bool | None = ...,
) -> Callable[
    [_FieldPlainSerializerT], _FieldPlainSerializerT
]
field_serializer(
    *fields: str,
    mode: Literal["plain", "wrap"] = "plain",
    return_type: Any = PydanticUndefined,
    when_used: WhenUsed = "always",
    check_fields: bool | None = None
) -> (
    Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT]
    | Callable[
        [_FieldPlainSerializerT], _FieldPlainSerializerT
    ]
)

启用自定义字段序列化的装饰器。

在下面的示例中,使用 set 类型的字段来减少重复。field_serializer 用于将数据序列化为排序列表。

from pydantic import BaseModel, field_serializer

class StudentModel(BaseModel):
    name: str = 'Jane'
    courses: set[str]

    @field_serializer('courses', when_used='json')
    def serialize_courses_in_order(self, courses: set[str]):
        return sorted(courses)

student = StudentModel(courses={'Math', 'Chemistry', 'English'})
print(student.model_dump_json())
#> {"name":"Jane","courses":["Chemistry","English","Math"]}

有关更多信息,请参阅用法文档

支持四种签名

  • (self, value: Any, info: FieldSerializationInfo)
  • (self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)
  • (value: Any, info: SerializationInfo)
  • (value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)

参数

名称 类型 描述 默认值
fields str

应调用该方法的字段。

()
mode Literal['plain', 'wrap']

序列化模式。

  • plain 表示将调用该函数而不是默认的序列化逻辑,
  • wrap 表示将调用该函数并带有一个参数,以便选择性地调用默认的序列化逻辑。
'plain'
return_type Any

函数的可选返回类型,如果省略,将从类型注解中推断。

PydanticUndefined
when_used WhenUsed

确定序列化器何时用于序列化。

'always'
check_fields bool | None

是否检查模型上实际存在这些字段。

None

返回

类型 描述
Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT] | Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT]

装饰器函数。

源代码在 pydantic/functional_serializers.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def field_serializer(
    *fields: str,
    mode: Literal['plain', 'wrap'] = 'plain',
    # TODO PEP 747 (grep for 'return_type' on the whole code base):
    return_type: Any = PydanticUndefined,
    when_used: WhenUsed = 'always',
    check_fields: bool | None = None,
) -> (
    Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT]
    | Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT]
):
    """Decorator that enables custom field serialization.

    In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list.

    ```python
    from pydantic import BaseModel, field_serializer

    class StudentModel(BaseModel):
        name: str = 'Jane'
        courses: set[str]

        @field_serializer('courses', when_used='json')
        def serialize_courses_in_order(self, courses: set[str]):
            return sorted(courses)

    student = StudentModel(courses={'Math', 'Chemistry', 'English'})
    print(student.model_dump_json())
    #> {"name":"Jane","courses":["Chemistry","English","Math"]}
    ```

    See [the usage documentation](../concepts/serialization.md#serializers) for more information.

    Four signatures are supported:

    - `(self, value: Any, info: FieldSerializationInfo)`
    - `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)`
    - `(value: Any, info: SerializationInfo)`
    - `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)`

    Args:
        fields: Which field(s) the method should be called on.
        mode: The serialization mode.

            - `plain` means the function will be called instead of the default serialization logic,
            - `wrap` means the function will be called with an argument to optionally call the
               default serialization logic.
        return_type: Optional return type for the function, if omitted it will be inferred from the type annotation.
        when_used: Determines the serializer will be used for serialization.
        check_fields: Whether to check that the fields actually exist on the model.

    Returns:
        The decorator function.
    """

    def dec(f: FieldSerializer) -> _decorators.PydanticDescriptorProxy[Any]:
        dec_info = _decorators.FieldSerializerDecoratorInfo(
            fields=fields,
            mode=mode,
            return_type=return_type,
            when_used=when_used,
            check_fields=check_fields,
        )
        return _decorators.PydanticDescriptorProxy(f, dec_info)  # pyright: ignore[reportArgumentType]

    return dec  # pyright: ignore[reportReturnType]

model_serializer

model_serializer(
    f: _ModelPlainSerializerT,
) -> _ModelPlainSerializerT
model_serializer(
    *,
    mode: Literal["wrap"],
    when_used: WhenUsed = "always",
    return_type: Any = ...
) -> Callable[
    [_ModelWrapSerializerT], _ModelWrapSerializerT
]
model_serializer(
    *,
    mode: Literal["plain"] = ...,
    when_used: WhenUsed = "always",
    return_type: Any = ...
) -> Callable[
    [_ModelPlainSerializerT], _ModelPlainSerializerT
]
model_serializer(
    f: (
        _ModelPlainSerializerT
        | _ModelWrapSerializerT
        | None
    ) = None,
    /,
    *,
    mode: Literal["plain", "wrap"] = "plain",
    when_used: WhenUsed = "always",
    return_type: Any = PydanticUndefined,
) -> (
    _ModelPlainSerializerT
    | Callable[
        [_ModelWrapSerializerT], _ModelWrapSerializerT
    ]
    | Callable[
        [_ModelPlainSerializerT], _ModelPlainSerializerT
    ]
)

启用自定义模型序列化的装饰器。

当模型需要以自定义方式序列化时,这非常有用,允许超越特定字段的灵活性。

一个例子是将温度序列化为相同的温度刻度,例如摄氏度。

from typing import Literal

from pydantic import BaseModel, model_serializer

class TemperatureModel(BaseModel):
    unit: Literal['C', 'F']
    value: int

    @model_serializer()
    def serialize_model(self):
        if self.unit == 'F':
            return {'unit': 'C', 'value': int((self.value - 32) / 1.8)}
        return {'unit': self.unit, 'value': self.value}

temperature = TemperatureModel(unit='F', value=212)
print(temperature.model_dump())
#> {'unit': 'C', 'value': 100}

对于 mode='plain'(默认值)支持两种签名

  • (self)
  • (self, info: SerializationInfo)

以及对于 mode='wrap' 的另外两种签名

  • (self, nxt: SerializerFunctionWrapHandler)
  • (self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)

    有关更多信息,请参阅用法文档

参数

名称 类型 描述 默认值
f _ModelPlainSerializerT | _ModelWrapSerializerT | None

要装饰的函数。

None
mode Literal['plain', 'wrap']

序列化模式。

  • 'plain' 表示将调用该函数而不是默认的序列化逻辑
  • 'wrap' 表示将调用该函数并带有一个参数,以便选择性地调用默认的序列化逻辑。
'plain'
when_used WhenUsed

确定何时使用此序列化器。

'always'
return_type Any

函数的返回类型。如果省略,将从类型注解中推断。

PydanticUndefined

返回

类型 描述
_ModelPlainSerializerT | Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT] | Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT]

装饰器函数。

源代码在 pydantic/functional_serializers.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def model_serializer(
    f: _ModelPlainSerializerT | _ModelWrapSerializerT | None = None,
    /,
    *,
    mode: Literal['plain', 'wrap'] = 'plain',
    when_used: WhenUsed = 'always',
    return_type: Any = PydanticUndefined,
) -> (
    _ModelPlainSerializerT
    | Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT]
    | Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT]
):
    """Decorator that enables custom model serialization.

    This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields.

    An example would be to serialize temperature to the same temperature scale, such as degrees Celsius.

    ```python
    from typing import Literal

    from pydantic import BaseModel, model_serializer

    class TemperatureModel(BaseModel):
        unit: Literal['C', 'F']
        value: int

        @model_serializer()
        def serialize_model(self):
            if self.unit == 'F':
                return {'unit': 'C', 'value': int((self.value - 32) / 1.8)}
            return {'unit': self.unit, 'value': self.value}

    temperature = TemperatureModel(unit='F', value=212)
    print(temperature.model_dump())
    #> {'unit': 'C', 'value': 100}
    ```

    Two signatures are supported for `mode='plain'`, which is the default:

    - `(self)`
    - `(self, info: SerializationInfo)`

    And two other signatures for `mode='wrap'`:

    - `(self, nxt: SerializerFunctionWrapHandler)`
    - `(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)`

        See [the usage documentation](../concepts/serialization.md#serializers) for more information.

    Args:
        f: The function to be decorated.
        mode: The serialization mode.

            - `'plain'` means the function will be called instead of the default serialization logic
            - `'wrap'` means the function will be called with an argument to optionally call the default
                serialization logic.
        when_used: Determines when this serializer should be used.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.

    Returns:
        The decorator function.
    """

    def dec(f: ModelSerializer) -> _decorators.PydanticDescriptorProxy[Any]:
        dec_info = _decorators.ModelSerializerDecoratorInfo(mode=mode, return_type=return_type, when_used=when_used)
        return _decorators.PydanticDescriptorProxy(f, dec_info)

    if f is None:
        return dec  # pyright: ignore[reportReturnType]
    else:
        return dec(f)  # pyright: ignore[reportReturnType]